
Small Basic and the Raspberry Pi

By Philip Munts
Munts Technologies

Originally published here on the Microsoft TechNet Wiki on 9 March 2015

Introduction

Microsoft Small Basic is a fun and easy to learn programming language. But for the Embedded Systems world in which I
work and play, Small Basic doesn't offer much. With the LitDev extension (http://litdev.co.uk), you can issue commands to
something connected to a serial port or a USB port. However, serial ports can be finicky and there is a steep learning
curve for USB devices, even when using a library like LitDev.

There is, however, one facility built into Small Basic that can be used for controlling external devices: The Network

object. The Network object offers two methods for fetching web pages. The Network.DownloadFile(URL) method

stores the web server response to a local file, and the Network.GetWebPageContents(URL) method returns the web

server response as a string.

Digression: A Short History of The Internet

What we now call the Internet started out as research conducted by the U.S. Department of Defense Advanced Research
Projects Agency (ARPA), called ARPANET. It began operation in 1969 with 4 nodes. I will call this the Internet First
Generation: It connected research facilities.

The U.S. National Science Foundation began funding other non-military research networks (CSNET and NSFNET) using
the same protocols as ARPANET in 1981. These networks interconnected with ARPANET using the Internet Protocol,
and were made available to universities. The entire network began to be called The Internet. It still connected research
facilities, but definition of same was increasingly flexible.

In the late 1980's, private network operators also began connecting to The Internet and offering service to ordinary
consumers. The primary services those days were email, file transfer services, and discussion forums. By the mid
1990's, it was possible for an ordinary person to obtain an email address, search for and download files, and read and
post comments on various online forums. I will call this the Internet Second Generation: It connected individual persons to
information sources.

After 1994, three things happened that caused the Internet to grow explosively. First, the WWW (World Wide Web)
service was introduced to the Internet. The WWW was simply a new file delivery service, but with files formatted for
interactive viewing using a new markup language called HTML, delivered with a new efficient transfer protocol called
HTTP, to new interactive client programs called browsers.

The second thing that happened was the introduction of so-called broadband high speed Internet service, which was
much faster than the previous telephone line dial up service. Broadband service can be delivered via specially
conditioned telephone lines (DSL), cable TV cables, optic fibers, terrestrial radio channels, and satellite links.

The third thing that happened, just before the new millennium, was the invention of wireless Ethernet and the rapid
deployment of wireless hotspots. Now it was possible to connect to the Internet without cables. This was still the second
generation, though, people connecting to information sources.

Even the earliest web servers from 1994 on had an interesting capability called CGI (Common Gateway Interface). This
allowed a web browser ask the web server to run an external program and return the results. For example, fetching
http://someserver.com/cgi-bin/someprogram from your web browser would ask the computer serving
http://someserver.com to run the program file called someprogram stored in the cgi-bin web server file system

directory. (cgi-bin was recognized by the web server to be a special magic directory containing program files instead of

HTML text files). The program file someprogram was expected to generate some text response, probably formatted in

HTML, which was then delivered back to your web browser.

http://social.technet.microsoft.com/wiki/contents/articles/30188.small-basic-and-the-raspberry-pi.aspx
http://someserver.com/
http://someserver.com/cgi-bin/someprogram
http://litdev.co.uk/
http://social.technet.microsoft.com/wiki

The CGI facility was intended for generating customized HTML on the fly (dynamic web pages). But we realized very
early on that CGI programs could control external devices as well. Interestingly, there is a high level of abstraction here:
You cannot determine from the URL whether http://someserver.com/cgi-bin/someprogram is running on a supercomputer
in an underground data center, or whether it is running on a single chip microcomputer inside a light bulb. This is the
embedded systems restatement of the famous New Yorker cartoon quip “On the Internet, nobody knows you're a dog”.
Because of security weaknesses, the original CGI facility is not used much on ordinary web servers anymore. But the
principle lives on in smaller devices.

Ubiquitous wireless internet has enabled what I will call the Internet Third Generation, also known as the Internet of
Things or IoT. With the Internet of Things, many, if not most, of the nodes on the Internet will be devices rather than
people and information sources like the second generation. These devices can act as mini-web servers, providing
information interactively to a person, or they may communicate with each other purely in a machine-to-machine fashion.
Manufacturers of almost every kind of consumer goods are busy incorporating Internet services of one kind or another
into their products.

How to control a device from Small Basic

Imagine we would like to turn on and off a light from a Small Basic program: A classic embedded systems task.

There are several ways to implement such a system. In the old days, one would build a microcomputer with an RS-232
serial port into the light controller. You then connect a cable from the serial port on the device to the serial port on the
Windows computer, possibly with a 25-9 pin adapter, crossover cable, null modem adapter, etc. Then you would try to
figure out the baud rate, parity settings, and which serial port was which on your computer. If you were determined you
would eventually get it working. After installing the LitDev extension for serial port support, you can now control the light
from Small Basic by sending commands out the serial port to the light controller.

The cable challenges and bit rate limitations of serial ports led to the introduction of USB (Universal Serial Bus), which
standardized the cabling and increased the baud rate by orders of magnitude. But USB brings its own peculiar
challenges, including the fact that devices can wind up at different addresses depending on which port they are plugged
into. Still, one can now build a microcomputer with a USB port into the light controller and eventually get it working from
Small Basic using the LitDev extension.

A third option is to build a microcomputer with either wired or wireless Ethernet into the light controller. If the
microcomputer runs a mini-web server with something like CGI, one can easily issue commands to it from a web browser,
or from Small Basic using the Network object.

The Raspberry Pi

There are hundreds of microcomputer boards available that can be used for such a device server. We can narrow the
field by concentrating only on those that are well supported and cost less than $30. Certainly among the most popular in
this range is the Raspberry Pi (http://www.raspberrypi.org), with more than five million sold. The Raspberry Pi has been
available in five production models (A, B, A+, B+, 2B). The B and B+ models have two or four USB ports and built-in
wired Ethernet. The A and A+ models have only one USB port and no built-in networking, but cost less and consume
considerably less power. The original A and B models have a 26-pin expansion header. The A+ and B+ models have a
40-pin expansion header (26 pins of which are the same as the A and B). The very latest Raspberry Pi 2 Model B is
mechanically interchangeable with the B+ but offers a faster quad-core processor and twice the RAM.

http://www.raspberrypi.org/
http://someserver.com/cgi-bin/someprogram

Figure 1 – Raspberry Pi Model A+

The Raspberry Pi Model A+ is the least expensive and most power efficient member of the family, with a suggested retail
price of USD $20. The actual street price runs $25 at time of writing. You will need to add a wireless Ethernet adapter
(the Edimax EW-7811U is strongly recommended), a micro-SD card for booting the operating system, and a micro-USB
power source, probably bringing the total system price over USD $30.

Interface connectors on the A+ are a micro USB slave port (+5V power supply only), a couple of flat cable connectors for
LCD display and camera modules, an HDMI video output jack, a 3.5 mm Audio/Video jack, one USB host port, and the 40
pin expansion header J8. For this article, a 2 gigabyte micro-SD card and an Edimax EW-7811U wireless Ethernet
adapter are permanently installed. Figure 1 above shows the Raspberry Pi A+ used for this article. Along the left edge of
the board, the micro-SD card is barely visible. The wireless network adapter is plugged into the USB host port on the right
edge of the board. The 40-pin expansion header J8 is visible along the top edge of the board.

Raspbian Linux Operating System

The usual operating system for the Raspberry Pi is Raspbian Linux, which is essentially Debian Linux recompiled for the
processor in the Raspberry Pi. It must installed onto the micro-SD card, which is then inserted in the Raspberry Pi. The
micro-SD card must be reformatted with two partitions: A small DOS FAT file system partition which contains the boot
files, and a larger Linux OS file system partition which contains the rest of the operating system.

Raspbian Linux is both the strength and the weakness of the Raspberry Pi. With its Unix heritage, it is unbelievably
powerful for such a small computer. However, for a headless (no keyboard or display) embedded system, Raspbian
Linux leaves a lot to be desired. Installing, configuring, and administering it is not trivial. The operating system partition
can be corrupted if the system is not shutdown in an orderly fashion. Furthermore, the flash memory cells on the micro-
SD card are not eternal and will eventually wear out. SD cards are cheap and easy to use, but they were never designed
to serve for operating system partitions.

MuntsOS

MuntsOS is an extremely reduced distribution of the Linux operating system. It is delivered as a single Linux kernel image
file with the main or root file system built into it. When the kernel boots on a target computer, it unpacks a fresh copy of
the root file system into RAM and uses it there. The Raspberry Pi boots from a micro-SD card, but after it has finished
booting it no longer accesses the micro-SD card. This has several advantages. First, the RAM file system is very fast,
much faster the micro-SD card. Second, it cannot be corrupted by pulling power without performing an orderly shutdown.
Every time the Raspberry Pi boots, it unpacks a new and fresh copy of the root file system from the kernel image. Third, it
does not routinely write to the micro-SD card, which helps avoid wearing out the flash memory cells in the card.

The Thin Server

For some time I have been experimenting with a system design pattern I call the Thin Server. It is essentially an inversion
of the Thin Client concept that Sun Microsystems and other companies began marketing at the close of the 20 th century.
The idea behind the JavaStation and other thin client devices was to relocate as much as possible the software
complexity and processing power from the client computer to the server computer. The client computer was to be little
more than a network interface for the user's mouse, keyboard, display monitor, and audio. All of the user's application
software would run on the server, where it could be centrally managed.

In contrast, a Thin Server is little more than a network interface for a single I/O device. Ideally, a Thin Server will be built
from a cheap and ubiquitous network microcomputer like the Raspberry Pi. The software must be easy to install from a
user's PC or Mac without requiring any special programming tools. It must be able to run headless, administered via the
network. It must be able to survive without orderly shutdowns, and must not write much to flash media. It must provide a
network based API (Application Programming Interface) using HTTP as a lowest common denominator.

MuntsOS, with its operating system running entirely from RAM, serves well for the Thin Server, and in fact the two
concepts have evolved together over the past few years.

GPIO

General Purpose Input/Output pins are connections available on microcomputers like the Raspberry Pi. GPIO pins carry
digital signals (on/off or high/low or binary 1/0) between the microcomputer and the external device. A GPIO pin can be
configured as an Input, meaning the signal flows from the external device to the microcomputer, or as an Output,
meaning the signal flows from the microcomputer to the external device.

The Linux operating system numbers GPIO pins from 0 (GPIO0, GPIO1, …). Note that the Linux GPIO pin number
usually does not correspond to any physical pin number. Some processors may have hundreds of GPIO pins available.
Linux treats each pin as a separate I/O device. The Raspberry Pi Model A+ brings out a number of GPIO pins, along with
power and ground to the J8 expansion header. See Figure 2.

Figure 2 – J8 Expansion Header

The Raspberry Pi GPIO pins are 3.3V signals, meaning outputs switch between ground and +3.3V, and inputs must not
be connected to voltages below ground or above +3.3V. They cannot deliver very much power, and will almost always
need some sort of driver or amplifier for real device loads such as motors and lights. It is barely possible to drive a single
LED (Light Emitting Diode) from a GPIO pin, but this cannot be recommended. Use some sort of driver or amplifier such
as the ULN2003A.

Note that some of the Raspberry Pi expansion header pins have alternate functions. For example, GPIO14 and GPIO15

can also be used for a serial port. Such pins may not be available for GPIO.

For experimentation, it is convenient to connect the Raspberry Pi to a solderless breadboard with an adapter like the
Adafruit T-Cobbler Plus to the J8 expansion header. Figure 3 shows the Raspberry Pi Model A+ connected to a
solderless breadboard.

http://www.adafruit.com/product/1989

Figure 3 – Breadboard Connection

A Thin Server for GPIO

Setting up a Raspberry Pi GPIO Thin Server is very simple. Just download the zip file at:

http://tech.munts.com/rpi/GPIO_server/muntsos/muntsos-gpio-server-RaspberryPi.zip

and extract it to a freshly FAT32 formatted micro-SD card. It includes support for the Edimax EW-7811U wireless network
adapter (and others using similar Realtek chip sets). The zip file contains the MuntsOS kernel image file plus a number of
other binary and text files the Raspberry Pi requires for booting. Then edit the text file:

autoexec.d/00-wlan-RaspberryPi

on the micro-SD card to configure the thin server's host name, network SSID and encryption key. Eject the micro-SD card
from your PC or Mac, and insert it into the socket on the bottom of the Raspberry Pi board. When you power on the
Raspberry Pi, it will boot MuntsOS from the micro-SD card and attach to the wireless network.

Discovering the IP address the Raspberry Pi has acquired may prove tricky. The easiest way to find its address is with
the Apple Bonjour MDNS (Multicast Dynamic Name Service) service, which for Windows is part of the iTunes package but

can be installed separately. The Raspberry Pi GPIO Thin Server will register itself as hostname.local, where

hostname is whatever name you wrote in 00-wlan-RaspberryPi (or RaspberryPi-MuntsOS.local by default). If

the DHCP server assigns the Raspberry Pi a host name, the name newhostname.local will also be registered, where

newhostname is the first part of the newly assigned host name.

For example, if you write foo as the host name in 00-wlan-RaspberryPi, and the local DHCP server subsequently

assigns the host name bar.munts.net, the Raspberry Pi will respond to both foo.local and bar.local.

Without MDNS finding the IP address will be more difficult. If you have administrative access to the DHCP server for the
wireless network, you may be able to retrieve the IP address assignment from it. If worst comes to worst, you can attach
a keyboard and display (HDMI) to the Raspberry Pi and log in (user root, password default) and run the ifconfig

command to find out what its IP address is.

http://tech.munts.com/rpi/GPIO_server/muntsos/muntsos-gpio-server-RaspberryPi.zip

GPIO Server API

The web server running on the GPIO Thin Server responds to requests of the following forms:

http://servername:8083/GPIO/ddr/n,s Set data direction (0=input, 1=output)
http://servername:8083/GPIO/get/n Get pin (state 0=OFF, 1=ON)
http://servername:8083/GPIO/put/n,s Put pin (state 0=OFF, 1=ON)

where servername is the IP address or host name, n is the GPIO pin number (as numbered by the Linux operating

system), and s is the new state 0 or 1. As an example, the following sequence of requests sent from a browser to a

Raspberry Pi GPIO Thin Server will configure GPIO26 (which happens to be pin 37 of the J8 expansion header) as an

output and turn it on:

http://foo.local:8083/GPIO/ddr/26,1
http://foo.local:8083/GPIO/put/26,1

Putting It All Together

Figure 4 – LED Connections

Figure 4 shows a Fritzing diagram for connecting a single LED to the Raspberry Pi A+ J8 expansion header. The

GPIO26 signal drives a ULN2003A low side switch, which serves to amplify the current enough to turn on an LED. The

ULN2003A has been around a long time (the particular unit I used for this article was manufactured in 1978!) but is still
very useful. It is a low side switch device, meaning it pulls current to ground. A load, such as the LED, must be
connected between a positive supply voltage (+3.3V from the Raspberry Pi in this case) and one of the ULN2003A
outputs. The flat side of the LED and/or shorter lead connects to ULN2003A pin 10 and the round side and/or longer lead
connects to the 220 ohm resistor.

A sample program for turning the LED on and off from Small Basic is available, with publication ID PCD388-0. The

sample program is divided into three main sections.

http://fritzing.org/

Figure 5 – LED Control Program

The first section lays out the GUI (Graphical User Interface), placing a server prompt, a text box for the server name, and
a button initially labeled “Connect”:

' Lay out GUI

GraphicsWindow.Width = 300
GraphicsWindow.Height = 130
GraphicsWindow.Title = "LED Control Program"
GraphicsWindow.Show()

GraphicsWindow.DrawText(40, 30, "Server:")
ServerBox = Controls.AddTextBox(100, 28)
ConnectButton = Controls.AddButton("Connect", 120, 80)

The second section is the button handler subroutine, which contains the bulk of the program logic:

' Everything happens in the button handler subroutine

Controls.ButtonClicked = ButtonHandler

Sub ButtonHandler
 b = Controls.LastClickedButton
 c = Controls.GetButtonCaption(b)

 If c = "Connect" Then
 servername = Controls.GetTextBoxText(ServerBox)
 pin = 26
 direction = 1
 PutDDR()
 data = 0
 PutGPIO()
 Controls.SetButtonCaption(b, " ON ")
 EndIf

 If c = " ON " Then
 pin = 26
 data = 1
 PutGPIO()
 Controls.SetButtonCaption(b, " OFF ")
 EndIf

 If c = " OFF " Then
 pin = 26
 data = 0
 PutGPIO()
 Controls.SetButtonCaption(b, " ON ")
 EndIf
EndSub

The last section of the program contains subroutines that wrap the HTTP server API:

' Write GPIO data direction bit
' Parameter variables:
' servername -- IP address or host name
' pin -- GPIO pin number (2-26, as numbered by Linux)
' direction -- 0 for input, 1 for output

Sub PutDDR
 webpage = Network.GetWebPageContents("http://" + servername + ":8083/GPIO/ddr/" + pin +
"," + direction)
 If Text.StartsWith(webpage, "DDR" + pin + "=") Then
 Else
 GraphicsWindow.ShowMessage(webpage, "GPIO Server Error")
 EndIf
EndSub

' Read GPIO data bit
' Parameter variables:
' servername -- IP address or host name
' pin -- GPIO pin number (2-26, as numbered by Linux)
' data -- Set to 0 or 1

Sub GetGPIO
 webpage = Network.GetWebPageContents("http://" + servername + ":8083/GPIO/get/" + pin)
 If Text.StartsWith(webpage, "GPIO" + pin + "=") Then
 data = Text.GetSubTextToEnd(webpage, Text.GetIndexOf(webpage, "=") + 1)
 Else
 GraphicsWindow.ShowMessage(webpage, "GPIO Server Error")
 EndIf
EndSub

' Write GPIO data bit
' Parameter variables:
' servername -- IP address or host name
' pin -- GPIO pin number (2-26, as numbered by Linux)
' data -- 0=OFF (low), 1=ON (high)

Sub PutGPIO
 webpage = Network.GetWebPageContents("http://" + servername + ":8083/GPIO/put/" + pin +
"," + data)
 If Text.StartsWith(webpage, "GPIO" + pin + "=") Then
 Else
 GraphicsWindow.ShowMessage(webpage, "GPIO Server Error")
 EndIf
EndSub

